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Abstract—Mosquito-borne diseases pose a serious global
health threat, causing over 700,000 deaths annually. This
work introduces a proof-of-concept Synthetic Swarm
Mosquito Dataset for Acoustic Classification, created to
simulate realistic multi-species and noisy swarm conditions.
Unlike conventional datasets that require labor-intensive
recording of individual mosquitoes, the synthetic approach
enables scalable data generation while reducing human
resource demands. Synthetic swarm audio generation is
the core novelty of this work. This approach facilitates the
development of realistic, scalable multi-species datasets that
would be impractical to collect through fieldwork. Using log-
mel spectrograms, we evaluated lightweight deep learning
architectures for the classification of mosquito species.
Experiments show that these models can effectively identify
six major mosquito vectors and are suitable for deployment
on embedded low-power devices. The study demonstrates
the potential of synthetic swarm audio datasets to accelerate
acoustic mosquito research and enable scalable real-time
surveillance solutions. The public dataset used in this study
can be found here '

Index Terms—Synthetic swarm audio, mosquito audio
classification, log-mel spectrogram, convolutional neural
networks, vector surveillance

I. INTRODUCTION

Mosquito-borne diseases—including dengue, malaria,
and Zika—infect hundreds of millions each year, with
key vectors such as Aedes aegypti, Anopheles, and Culex
driving transmission [1]. Their growing range, fueled by
urbanization and climate change, underscores the need
for scalable surveillance.

Conventional methods like trapping and lab identifi-
cation are slow and labor-intensive. These limits were
evident during the 2015-2016 Zika outbreak, where
delayed vector detection worsened the spread [2].

T are the correspondence authors.
Thttps://github.com/duydinhthai27/synthetic-swarm-mosquito

Audio-based detection via wingbeat frequency offers
a low-cost, non-invasive alternative [3], but most systems
are built for clean environments and single-species de-
tection—limiting real-world applicability on embedded
hardware.

This work introduces a compact, real-time mosquito
detection and classification system tailored for edge
deployment. It combines low-power audio sensing with a
lightweight dual-output neural network for both presence
and species prediction (Figure 1).

Fig. 1: Smart trap system with COq bait, audio sensing,
and onboard classification.

II. RELATED WORK

A. Audio-Based Mosquito Monitoring

Traditional mosquito monitoring systems focused on
extracting wingbeat frequencies under clean conditions,
often limited to single-species detection. Kiskin et al. [4]
pioneered the use of convolutional neural networks
(CNNSs) on spectrograms, demonstrating high accuracy
in controlled settings.



The HumBug Project [5] introduced large-scale, real-
world mosquito audio data collected via smartphones,
enabling broader applicability. Fernandes et al. [6]
achieved state-of-the-art binary classification using mel
spectrograms and compact residual CNNs. More recently,
Ramos et al. [7] developed a low-power audio recording
system capable of real-time mosquito detection on
embedded hardware.

B. Feature Representations

Early systems used fast Fourier transform (FFT)
and mel-frequency cepstral coefficients (MFCCs), but
these were sensitive to noise. Mel spectrograms proved
more robust and better suited for CNNs. Wavelet-based
methods such as the continuous wavelet transform
(CWT) improved time-frequency localization. Yang et
al. [8] showed that CWT enhanced detection in noisy
environments. However, many approaches still rely on
hand-crafted features rather than end-to-end learning.

C. Deep Learning Architectures

CNNSs remain the most common choice for mosquito
audio classification. Kiskin et al. [4] and Fernandes et
al. [6] used CNNss to classify mosquito species with high
precision. Wang et al. [9] introduced a convolutional
recurrent neural network (CRNN) for modeling temporal
dynamics.

To support edge deployment, lightweight models
have been proposed. Toledo et al. [10] achieved 96%
accuracy with an LSTM model containing fewer than
70k parameters. Fernandes et al. [6] also optimized
residual CNNs for TinyML platforms.

D. Noise Robustness

Environmental noise remains a major challenge.
Supratak et al. [11] addressed this with MosquitoSong+,
incorporating noise augmentation and attention mecha-
nisms to maintain high performance under real-world
interference. Domain adaptation techniques have also
been proposed, though they often require extensive
annotated data.

E. Mosquito Audio Datasets
Several datasets support mosquito audio research:

o« HumBugDB [5]: Over 20 species recorded in
real-world conditions with background noise and
variable quality.

e Abuzz [12]: Community-sourced smartphone
recordings; large-scale but noisily labeled.

o Curated sets [4], [6]: Focused on 2-3 species in
clean lab settings.

These datasets often lack recordings of overlapping
species or swarms. Synthetic datasets have emerged to
simulate multi-species scenarios and support mosquito
counting tasks under controlled conditions.

F. Limitations in Existing Work

Despite progress, current systems face several limita-
tions:
o Limited support for multi-species detection and
mosquito counting;
o Few models optimized for embedded devices;
¢ Scarcity of datasets with realistic noise and swarm-
ing conditions.

G. Contribution of This Work

This study addresses the above gaps by proposing a
dual-headed CNN model capable of:
o Scalable training with a synthetic dataset simulating
swarms;
o Multi-species detection;
« Efficient execution on resource-constrained embed-
ded devices;
o Robustness to various noise conditions via augmen-
tation.
Our design builds upon prior work [4], [6], [11], while
introducing novel contributions in architecture design,
data synthesis, and deployment strategy.

III. PROBLEM STATEMENT

There is an urgent need for surveillance tools that can
estimate mosquito density and distinguish vector species
in real time under field conditions. While audio-based
detection systems show promise, they are often fragile
in noisy environments or when encountering multiple
overlapping mosquito sounds.

Additionally, deep learning models used for acoustic
insect classification are typically too resource-intensive
for low-power embedded devices. Most existing systems
are designed for presence detection only, lacking the
capability to handle species-level classification from
real-world, noisy swarm recordings.

IV. METHODOLOGY

This section outlines the methodology for mosquito
sound classification and counting. It includes audio
preprocessing, synthetic swarm generation, model ar-
chitectures, training, and evaluation.

A. Audio Preprocessing and Feature Extraction

Raw audio signals are sampled at 16 kHz and
normalized. To convert 1D waveforms into deep learning-
compatible formats, multiple signal transforms are
considered:

1) Fast Fourier Transform (FFT): The FFT is used
for global spectral analysis:

N-1
Z z[n]e 2R /N = 0,1, ...

n=0

X[k] = N -1 (1)

While useful for identifying dominant frequencies, FFT
lacks temporal localization.



2) Short-Time Fourier Transform (STFT): To handle
non-stationary wingbeat signals, STFT provides time-
frequency representations:

X(t,w) = /DO s(F)w(r —

—00

t)e I*Tdr (2)
where w(-) is a window function. STFT forms the basis
for spectrogram computation.

In this study, 64-bin log-mel spectrograms com-
puted via STFT are used. Spectrograms are saved as
RGB images for compatibility with visual backbones.
Noise augmentation improves robustness. To prepare the
acoustic features for classification, all mosquito swarm
recordings were resampled to a target sampling rate
of 16 kHz and then transformed into two alternative
time—frequency representations. In the short-time Fourier
transform branch, mel spectrograms were computed
using a 512-point FFT with a 25 ms Hann window and
a 10 ms hop size. Each spectrogram contained 128 mel
bands, expressed in decibel scale relative to the signal
maximum, and subsequently rendered as an image of
224 x 224 pixels.

"filename": "swarm_ 0000.wav",
"num_mosquitoes": 6,
"species_count": {

"Re. aegypti": 3,

"C. pipiens": 1,

"An. arabiensis": 2

Fig. 2: Mel-spectrogram of a synthetic mosquito swarm.
Vertical lines indicate wingbeat frequencies.

{
"filename": "swarm_0034.wav",
"num_mosquitoes”: 4,
"species_count": {
"An. arabiensis": 2,
"Ae. albopictus": 2
}
}

Fig. 3: Example input with corresponding species label
metadata. Used for generating multi-label targets.

B. Synthetic Swarm Generation

Let S = s1, ..., sk denote mosquito species. For each
synthetic sample, n ~ U(1,10) mosquitoes are selected:

X(t) = Zgi szt —7) 10, T)(t—7)  (3)

where g; ~ U(0.2,1.0) is gain and 7; ~ U(0, 3.0) is
time offset. Segments x;(t) are randomly chunked (At €
[0.3,0.6]s). White Gaussian noise is added:

Xnoisy(t) = X(t) + e(t), SNR € [20,40] dB (4)

Multi-label ground truth vectors y € 0,1% indicate
species presence.
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Fig. 4: Synthetic swarm generation pipeline.

As shown in Figure 4, swarm synthesis models density,
overlap, and timing to create realistic mixtures that
support multi-label learning and better generalization. To
create the synthetic mosquito swarm dataset, individual
mosquito recordings were combined using a carefully
controlled strategy that mimicked real-world swarm
conditions. Key steps included randomly selecting 3—7
mosquito audio chunks (each 0.3-0.6s) from up to 3
species per sample, applying gain variation (0.2—1.0)
to simulate distance, and introducing random time
offsets (0—3s) to spread audio events across a 5-second
window. This approach ensured biological plausibility
and reduced signal artifacts like clipping or redundancy.
Additionally, white Gaussian noise was added at varying
SNR levels (20-40 dB) to simulate realistic trap environ-
ments. Each sample was annotated with species counts
and total mosquito numbers for multi-label training.
These refinements significantly improved the realism,
diversity, and balance of the dataset, enabling more
effective and generalizable model training.

C. Dataset

We use the Abuzz dataset [12], which contains labeled
mosquito wingbeat recordings across 20 species. For
this study, we categorize them into four groups:

o Aedes

o Anopheles

o Culex

« Noise (non-mosquito)

In this study, we focus on Aedes aegypti, Aedes
albopictus, Anopheles arabiensis, Anopheles gambiae,
Culex quinquefasciatus, Culex pipiens.

D. Model Architectures

Three neural network architectures are evaluated for
multi-label classification:

1) CNN (ResNet-18): Baseline architecture using
ResNet-18 to process 224 x 224 RGB spectrograms:

g=c(WTf+b), f=GAP(CNN(X)) (5

Here, f € RB*C is the global average pooled feature
representation, and B is the batch size. Pros: efficient
and edge-friendly. Cons: no temporal modeling.



CNN (ResNet-18)
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Fig. 5: CNN baseline architecture.

2) CNN + RNN: CNN features F' € REXCxXHXW
are reshaped and passed to an RNN:

S = reshape(F) € REXT*C T =H.W (6)
R = RNN(S) € RP*4 (7
j=c(WTR+b) 8)

Here, S is the sequence embedding of spectrogram
patches, and R is the hidden state at the final step.
This hybrid improves temporal awareness, but can suffer
from vanishing gradients.

Input Spectrogram (224 x 224 ONN (Rt 18), 1o € RE=CxHxW =W b ipra RNN, hr 5 g
P T G ¥

Fig. 6: CNN + RNN architecture.

3) CNN + LSTM: Replacing the RNN with an LSTM
improves long-range dependency modeling:

(ht,Ct) = LSTM(S)
=W hp+0)

(C))
(10)

Input Spectrogram (224 x 224) CNN (BNl 1), o o RExCxHxW Thabe, gserxc 15T, he 25

Fig. 7: CNN + LSTM architecture.

Here, hp is the final hidden state capturing temporal
dependencies across the sequence. This hybrid achieves
stronger modeling of long-range wingbeat patterns
compared to vanilla RNNs.

E. Training Pipeline

The training procedure includes spectrogram conver-
sion, label encoding, stratified data splitting, and end-
to-end model optimization:

« BCE loss with sigmoid activation

o Adam optimizer (o = 10™%)

« Early stopping based on validation loss

Predictions § € [0,1]% are thresholded at different T
for evaluation.
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Fig. 8: End-to-end learning pipeline for mosquito swarm
classification.

Algorithm 1 An overview of the end-to-end training
pipeline for multi-label mosquito species classification
from swarm audio.
1: procedure TRAINSWARMCLASSIFIER(D, Model
M, Epochs E)
2: Convert swarm audio z(t) to STFT spectrogram
X
3:  Compute binary label matrix Y € {0,1}7V*¢
from species counts
Compute label cardinality s; < > ;Yij
Dirains Dvai, Dtest <— stratified split on s;
: Load backbone CNN ¢ (e.g., ResNet-18), attach
classifier head, or RNN, or LSTM
7: Initialize optimizer Adam(6) and loss function
BCE
for e=1to E do
for each batch (x,y) € Dirgin do

10: x < resize and normalize image

11 g M(x;0)

12: L + BCEWithLogits(g, y)

13: Backpropagate and update 6

14: Evaluate validation loss and accuracy with
a fix threshold 7

15: Evaluate test F1, precision, recall using @i, =
K(g>T1)

E Evaluation Metrics

We use the following multi-label metrics:

o Multi-label Accuracy: The average proportion of
correctly predicted labels per sample, across all
classes. For prediction § € {0,1}¢ and true label
y € {0,1}¢, accuracy per sample is: & Ky =
95)

e Macro Precision, Recall, F1-score

These metrics highlight per-class performance and
robustness across imbalanced data.

V. EXPERIMENTAL RESULTS

This section presents the results of experiments con-
ducted on the multi-label mosquito species classification
task using CNN+LSTM, CNN+RNN, and CNN models
trained on swarm audio spectrograms. We evaluate
performance under different decision thresholds (0.3, 0.5,
and 0.7), focusing on the trade-off between sensitivity
(recall) and precision, particularly for embedded real-
time applications.

A. Impact of Threshold on Model Performance

Figure 9 compares the performance of CNN+LSTM,
CNN+RNN, and CNN across three thresholds using
four metrics: Accuracy, Macro F1, Precision, and Recall.
The CNN+LSTM consistently outperforms the others,
particularly in F1 and recall, confirming its ability to
capture long-term audio patterns.



Fig. 9: Performance comparison of CNN+LSTM,
CNN+RNN, and CNN models across thresholds 0.3,
0.5, and 0.7. Metrics include Accuracy, Macro F1-
Score, Precision, and Recall. CNN+LSTM performs best
overall, especially in recall and F1 at lower thresholds.

At threshold 0.3, the CNN+LSTM achieves its highest
F1 and recall, indicating strong sensitivity to mosquito
species presence. However, this comes at the cost of
reduced precision due to more liberal predictions. As
the threshold increases to 0.5 and 0.7, all models show
a decrease in recall and F1 with minimal gains in
precision—highlighting the classic trade-off in multilabel
classification between detection sensitivity and false
positives.

B. Learning Curve Analysis

o1 A

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Epoch Epoch

(a) Loss curves at threshold
0.3

Fig. 10: Training and validation loss of CNN+LSTM
model under different thresholds. Triangle markers
denote final test loss.

(b) Loss curves at threshold
0.5

Threshold 0.3 — Stable Generalization: Figure 10(a)
shows smooth and consistent convergence in both train-
ing and validation losses, suggesting good generalization.
The model avoids overfitting, and its final test perfor-
mance (triangle marker) confirms strong robustness.
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(a) Accuracy at threshold (b)
0.3 0.5

Accuracy at threshold

Fig. 11: Training and validation accuracy of
CNN+LSTM under different thresholds. Triangle
markers indicate test accuracy.

In Figure 11(a), validation accuracy continues to
rise after training accuracy saturates—evidence of well-
balanced learning. This supports using threshold 0.3 for
applications where missing a mosquito is more costly
than a false positive, such as in early-warning traps.

Threshold 0.5 — Overconfidence and Reduced Sensitiv-
ity: In contrast, Figure 10(b) shows early convergence in
training but unstable validation loss, indicating reduced
generalization. Figure 11(b) further shows plateaued
validation accuracy. The final test performance drops
compared to the 0.3 case.

This suggests that threshold 0.5 leads to a model that
is overconfident yet less sensitive to minority classes—an
undesired outcome for imbalanced multilabel detection
tasks.

C. Field Validation in Vung Tau, Vietnam

TABLE I: Summary of mosquito species detections in
Vung Tau, Vietnam.

Species # Positive Detections (out of 12)

Aedes aegypti 10
Anopheles arabiensis
Aedes albopictus
Culex quinquefasciatus
Anopheles gambiae
Culex pipiens

— O = O\

To evaluate real-world performance, we conducted
a field validation study in Vung Tau, Vietnam, where
swarm audio data was collected using a baited mosquito
trap equipped with CO, as an attractant to simulate
human presence. The trap was designed to encourage
natural mosquito swarming behavior while minimizing
environmental noise. A high-sensitivity microphone was
positioned near the trap to capture continuous flight-
tone recordings of approaching and hovering mosquitoes.
These real swarm audio samples were then processed
using our trained CNN+LSTM detection model, demon-
strating the best performance in prior evaluations. During
inference, a conservative detection threshold of 0.3
was applied to the model’s output probabilities to
balance sensitivity and specificity, particularly under field
conditions. Based on this setup, the following results
summarize the model’s performance across six target
mosquito species.

Table I summarizes detection outcomes from field
recordings. There are 12 swarm audios in total. The
model produced strong detections for Ae. aegypti (10/12)
and An. arabiensis (8/12). Ae. albopictus was detected
in half of the samples (6/12) with moderate confidence
( 35%). By contrast, C. quinquefasciatus and C. pipiens
rarely exceeded the detection threshold (1/12 each),
while An. gambiae was never detected (0/12).

Considering the context, the dominant detections of Ae.
aegypti and moderate signals of Ae. albopictus align with



their known distribution in southern Vietnam, including
Vung Tau. By contrast, the frequent positive detections
of An. arabiensis are false, as this African vector does
not occur in Vietnam. Meanwhile, An. gambiae was
consistently absent, which is geographically correct,
although the discrepancy with its sister species sug-
gests wingbeat misclassification. C. qguinquefasciatus is
common in Vietnam, and its scant recognition indicates
model under-sensitivity. Finally, C. pipiens holds little
public health significance in the region, making its low
detection rate acceptable.

VI. CONCLUSION

This paper proposed an end-to-end audio-based system
for real-time mosquito species detection and classifica-
tion, designed for deployment in resource-constrained
smart traps. The pipeline integrates synthetic swarm
audio generation, spectrogram-based feature extraction,
deep learning models, and thresholded multi-label clas-
sification to achieve robust species-level prediction in
noisy, multi-mosquito environments.

In contrast to simple augmentation methods such
as time-shifting and pitch-scaling, swarm synthesis
functions at a higher level, simulating overlapping
organism interactions as well as changing swarm density.
This supports multi-label learning, which helps the model
adapt better to actual swarm behaviours. Moreover, the
synthetic swarm dataset is a key innovation, as it offers
a scalable and reproducible resource for surveillance
research, thus minimizing the reliance on expensive
field data collection.

We explored multiple architectures, including a
lightweight CNN, a CNN+RNN hybrid, and a
CNN+LSTM model. Among these, the CNN+LSTM
consistently achieved the best classification performance,
particularly in terms of macro Fl-score and recall,
highlighting its strength in capturing temporal dynamics.

Thresholding played a key role in balancing recall and
precision. At 7 = 0.3, high recall was achieved, suitable
for surveillance scenarios where missing a species is
costlier than a false alarm. Higher thresholds (e.g.,
7 = 0.7) yielded better precision but degraded recall,
reinforcing the need for application-specific tuning.

We also introduced a stratified label cardinality-based
data split to improve training balance. The system’s
performance across six mosquito species showed both
strengths and trade-offs.

Future Work

Future research directions include:

« Integrating attention mechanisms to improve spec-
tral focus.

e Applying pruning and quantization for CNN+LSTM
deployment on ultra-low-power hardware.

o Enhancing the swarm generator to simulate complex

acoustic conditions.

o Exploring contrastive/self-supervised learning to

reduce dependence on labeled data.

o Implementing adaptive, context-aware thresholding

strategies.

This work demonstrates that lightweight, real-time
mosquito classification via audio is both feasible and
practical, offering a scalable foundation for vector
surveillance in low-resource environments.
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